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SUMMARY 

A finite element formulation of enclosed turbulent diffusion flames is presented. A primitive variables 
approach is preferred in the analysis. A mixed interpolation is employed for the velocity and pressure. In the 
solution of the Navier-Stokes equations, a segregated formulation is adopted, where the pressure 
discretization equation is obtained directly from the discretized continuity equation, considering the 
velocity-pressure relationships in the discretized momentum equations. The state of turbulence is defined by 
a k-e model. Near solid boundaries, a wall function approach is employed. The combustion rates are 
estimated using the eddy dissipation concept. The expensive direct treatment of the integrodifferential 
equations of radiation is avoided by employing the moment method, which allows the derivation of an 
approximate local field equation for the radiation intensity. The proposed finite element model is verified by 
investigating a technical turbulent diffusion flame of semi-industrial size, and comparing the results with 
experiments and finite difference predictions. 
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INTRODUCTION 

Today's topical problems in combustion engineering, such as the reduction of pollutant formation 
while retaining the combustion efficiency, have brought about a renewed interest in the 
development of detailed prediction procedures for flames. This is of course also supported by the 
recent improvements in computational facilities, which render the use of increasingly realistic 
mathematical models and more powerful numerical techniques possible. The prediction pro- 
cedures which are currently being employed for technical flames are almost exclusively based on 
finite difference methods.' The basic advantage of the finite element method is to allow for a 
flexible mesh. Thus the discretization can be adjusted to the geometry and the characteristics of 
the problem in a natural way. Mapping methods, which are being explored for finite difference 
codes,2 do not provide the same degree of flexibility. The solutions of turbulent reacting flows 
exhibit very sharp gradients of the field variables. Further, the real burner shapes involve fine 
geometrical details which influence the near-field flow decisively. Therefore this flexibility of the 
finite element-method can be expected to prove useful in flame prediction procedures. For this 
reason, we believe that it is worthwhile to study the application of the finite element method to 
technical flames. This is the scope of the present investigation. 
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Some applications of the finite element method in combustion problems have recently been 
reported. Sohn and Chung3 have investigated the development of unstable waves in rocket motor 
chambers. Benkhaldoun and Larrouturou4 have computed the flame propagation in a 
reactive-diffusive system, neglecting the coupling to the flow field, using an adaptive grid. Murray 
and Carey5 have studied the transport of chemical components within a laminar flow field with 
chemical reactions taking place at the solid boundary. Habbal et aL6 have presented a finite 
volume/finite element mixed procedure for the computation of flame propagation within an 
ignitable gaseous mixture where the flow field is assumed to be inviscid. 

In this paper we present a finite element formulation of enclosed turbulent diffusion flames. 
Turbulent diffusion flames are encountered in many important engineering applications, such as 
furnaces of thermal power plants, industrial furnaces or gas turbine combustors. The fuel and 
oxidant are injected separately into the combustion chamber, where they are mixed with each 
other and with the recirculating hot combustion products within a turbulent flow field and react 
with intensive heat release. 

The turbulence here is primarily responsible for the all important mixing and convective 
transport processes. Therefore it is a very important feature of the flow. Previous experience 
indicates that the inexpensive algebraic turbulence models are not accurate enough for this class 
of problems. In the present analysis the turbulence state is defined by a k--E model,7 which provides 
an optimal choice between accuracy and economy for practical purposes. Near solid boundaries, 
due to modelling difficulties caused by relaminarization effects, a wall function approach’ is used, 
where the flow in the near-wall region is not solved for but is assumed to obey the so-called ‘law of 
the wall‘. Finite element applications of the k--E model and the method of wall functions in 
isothermal flow problems were presented in a previous paper.’ 

In technical flames, besides convection, another mode of heat transfer, namely radiation, also 
becomes important. The radiative transfer is governed by integrodifferential equations. Thus the 
efficient ‘sparse matrix’ type of numerical procedure for convective transport cannot readily be 
employed to handle the radiation. Direct discretization procedures’ to treat the equations of 
radiation require too much computer time and storage” to allow them to be coupled with the 
iterative convective flow solution. In finite difference codes the so-called ‘flux methods”O are 
exclusively employed as radiation models, which are differential approximations derived under 
certain assumptions concerning the directional variation of the radiation intensity. Nevertheless, 
conventional flux methods are principally not compatible with irregular geometries and meshes. 
Therefore they do not provide a convenient alternative for finite element formulations. For this 
reason another differential approximation, namely the ‘moment method‘,’ is employed as the 
radiation model in this work, since it imposes no restrictions concerning the regularity of the mesh. 
It was shown in a recent paper” that the prediction capability of the method is comparable to that 
of many conventional flux methods. 

GOVERNING EQUATIONS 

The ‘mean’ equations of the turbulent flow are derived by using the Reynolds-averaging 
a p p r ~ a c h . ’ ~  The terms involving density fluctuations are neglected. This approximation is also in 
agreement with the recent experimental findingsI4 demonstrating a relatively small influence of 
density correlation terms in turbulent diffusion flames. In the present analysis attention is focused 
on statistically steady and axisymmetrical systems. In the following the overbars, which are 
usually used to denote the Reynolds-averaged quantities, will be omitted for the sake of simplicity. 
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Momentum equations and the equation of continuity 

expressed as 
Using a turbulent viscosity appr~ach , '~  the Reynolds-averaged momentum equations can be 

+!&[ r ar rp , ($+E)] ,  

aQ a 
p( u g  + z$) = - + .;[ pe( $ + g)] + t g I r 2 . g  - r i [  p k + pe( + + $) ]} 

(2) 

The effective viscosity p, in equations (1) and (2) is given by 

P e  = P  + Pt. ( 3 )  
The turbulent viscosity pt in ( 3 )  must be determined by a suitable turbulence model. The equation 
of continuity is 

(4) 

The turbulence model 

A k--E model of turbulence' is employed, in which the turbulent viscosity is related to the 
turbulence kinetic energy and its dissipation rate as 

pLt = CDp kZ/&. (5 )  

For high turbulent Reynolds numbers the transport equations for k and E can be expressed as 

where 

Conservation equations for chemical components 

The conservation equation of a chemical component in the gaseous mixture is given by" 
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where S j  contains the source of species j due to chemical reactions and phase change. If the fuel and 
oxidant are injected separately as primary and secondary flows into the combustion chamber, and 
if it is assumed that the effective Schmidt numbers of the components are equal, the following 
special form of the conservation equation (9) can be obtained” 

The ‘mixture fraction’ f is defined as 

where 
m m .  @.=>-L J 

V F  V j  

for reacting components taking part in a single step combustion reaction. 

The reaction model 

A one-step irreversible reaction for the combustion of a gaseous hydrocarbon fuel is considered, 
which can be expressed as 

IVFIF + I v o 2 1 0 z ~ 1 v C o 2 1 c 0 2  + I V H 2 0 1 H Z 0 .  (1 3) 
The combustion rate is estimated employing the eddy dissipation concept.’ The model assumes 
that the combustion rate is determined by the dissipation rate of turbulence eddies, which contain 
fuel, oxygen and hot combustion products and show an intermittent coexistence. Here the source 
term S j  in (9) for the fuel is given by 

The energy equation 

The transport equation for the specific enthalpy can be given asI5 

where S h  takes the heat source due to radiation into account. Here the kinetic energy, pressure 
work and viscous dissipation terms are neglected. Assuming an ‘ideal’ mixture, the local mean 
temperature and density can be obtained from 

T =  h - x A h j m j  Z c p , j m j ,  ( j >ii 
p = p J R T x m j J M j .  

j 
(17) 

The radiation model 

Finite difference codes exclusively employ flux methods” as radiation models. In flux models a 
discrete angular distribution of the radiation intensity is assumed. This produces ordinary 
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differential equations for the radiative energy transport, which are to be solved along the 
orthogonal co-ordinate directions (along x = const., r = const. grid lines). Therefore the appli- 
cation of flux models using irregular grids seems not to be straightforward. We propose here the 
employment of the moment method’ as radiation model in finite element codes, which can be 
used directly in irregular grids. The derivational details and some finite element applications of the 
method can be found in Benim.” Here the following approximate field equation for the radiation 
intensity is obtained: 

Assuming grey walls, the following boundary condition for (18) can be derived: 

( I o  - Ibw) = 0. 810 3Dw -+- an 2(2-&,) 

The source term of the energy equation (1 5 )  is given by 

S,= -4nK,[I,(  T ) - Io ] .  

THE FINITE ELEMENT FORMULATION AND THE SOLUTION PROCEDURE 

The finite element discretization equations are obtained by the Galerkin method.17 Since the flows 
under consideration are highly convective, the transport equations containing convective terms 
are upwinded by a Petrov-Galerkin method,’* which uses non-symmetric, continuous weighting 
functions. The finite elements used in this work are composite elements consisting of four 
quadrilaterals with bilinear interpolation for velocities and all other dependent variables 
(including the turbulent viscosity and density) except pressure (Figure 1). The pressure is linearly 
interpolated over the composite quadrilateral. 

The segregated formulation of the Navier-Stokes equations 

A segregated formulation is adopted for the solution of the momentum (l), (2) and continuity (4) 
equations. This approach is analogous to a well known finite difference procedure called 
SIMPLE. l9 Details of the finite element formulation and its applications in laminar incom- 
pressible flow problems can be found in Benim and Zinser.20 The method is based on the 

Figure 1 .  The finite element used 
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derivation of a discretization equation for pressure corrections p' directly from the discretized 
continuity equation, considering the relationships established between velocities and pressure in 
the discretized momentum equations. This equation in the present case takes the form 

where 

Ni and Hi in (21) and (22) represent the shape functions for the velocity and pressure. The 
coefficients (a,Ji and (aJi denote the ith diagonal elements of the system matrices for u and v 
respectively. The terms (bJij and (bJi j  are the influence coefficients of thejth pressure node to ui 
and vi.20 u* and u* denote the velocities based on the incorrect pressure field p*. The corrections to 
the pressure field, which lead to a better satisfaction of the continuity equation, are obtained from 
equation (21). The velocities and pressures are subsequently corrected according to 

pi = p: + 0,p:. (25) 
An under-relaxation of the pressure is often necessary. R, in (25) denotes the under-relaxation 
factor for the pressure. In this formulation, in contrast to the integrated form~lation,'~ an 
absolutely continuity-satisfying velocity field at each iteration (solving a large system of equations) 
is not required. Rather, an asymptotic satisfaction of the continuity equation within the whole 
iterative procedure is sought. For highly non-linear problems and large meshes the present 
segregated formulation offers, we find, a more economical alternative than the integrated 
formulation. 

The near-wall treatment 

Turbulence dies out close to solid boundaries. The standard turbulence models based on high- 
Reynolds-number assumptions lose their validity in these regions. Here, the method of wall 
functions7 provides a convenient alternative to model near-wall flows. In this approach it is 
assumed that the following equations hold within the wall layer: 

u+ = y +  for y +  < 11.6, 
u'=(l/lc)ln(Ey+) for y +  2 11-6, 

k = u,"/CA12, 

E = Ci14k3/2/~y, 

which are derived under the main simplifying assumption that the shear stress is independent of 
the distance to the wall within the wall layer. Thus the boundary nodes can be placed not at the 
wall, but at a distance from the wall, the boundary conditions being derived from (26H28). To 
evaluate (26)-(28), the wall shear stress must be known. The present approach for the estimation of 
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the wall shear stress was discussed in Benim and Zinser.’ A possible extension of the recursive 
shear stress formulae’ for a wall element with irregular shape (Figure 2) is given below: 

In (29) wp denotes the wall-parallel component of the velocity vector. For an inclined wall wp must 
also replace u in (20). The velocity component normal to the wall can be obtained from continuity 
considerations.’ 

For the energy equation it is assumed that the heat transfer coefficients are known by 
experiments. The convective heat flux to the wall can then be prescribed as 

4w = a w v -  Tw), (30) 

where the wall temperatures are also assumed to be known as boundary conditions. 

The solution algorithm 

The important steps of the solution procedure can be summarized as follows: 

Step 1. Guess initial fields for u, u, p ,  k, E, pt, T, p, SF. 
Step 2. Solve (1) for u. 
Step 3. Solve (2) for u. 
Step 4. Solve (21) for p’ and compute the new pressure field from (25). 
Step 5. Correct velocity fields accerding to (23), (24). 
Step 6. Solve (6) for k. 
Step 7. Solve (7) for E. 
Step 8. Update put and wall boundary conditions according to (5 )  and (26H28). 
Step 9. Solve (9) for the concentration of fuel. 
Step 10. Solve (10) forf. 
Step 11. Calculate remaining concentration fields from (I l ) ,  (12) and update SF according 

to (14). 

Figure 2. An element near the wall 
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Step 12. 
Step 13. 
Step 14. 
Step 15. 

Solve (1 8) for I,. 
Solve (15) for h. 
Compute the temperature and density fields from (16) and (17). 
Go to step 2 if convergence is not achieved. 

The solution of the finite element discretization equations for each field variable is obtained by a 
direct solver using a band matrix storage mode. Under-relaxation is employed for u, v, p ,  k and E 

subsequent to the solution of their discretization equations at steps 2, 3 , 4 , 6  and 7 in the above 
procedure. The p,, T, p and S ,  fields are also under-relaxed. No under-relaxation is employed for 
mj, 1; I ,  and h. An optimization of the relaxation factors is not attempted. However, a few trials 
have indicated that the pressure field usually requires a heavier under-relaxation than the other 
variables. Wall boundary conditions are not directly under-relaxed. At initial iterations, a slight 
under-relaxation is used for the wall shear stress. No instability due to the wall model is observed. 

NUMERICAL EXAMPLE 

The present finite element formulation is assessed by investigating flame 29 of the M-2 trials21 
performed in the International Flame Research Foundation (IFRF). This is a non-swirling natural 
gas flame with axial fuel and coaxial air injection, and with 3000 kW thermal load. The furnace 
and the burner are sketched in Figure 3. 

The inlet mass flow rate of the natural gas through the primary nozzle is 280 kg h- '. Dry air 
with mass flow rate 3126 kg h- '  and oxygen with mass flow rate 170 kg h- ' are injected through 
the secondary nozzle. Detailed information about the experimental set-up can be found in 
Michelfelder and Lowes2' and Michelfelder.22 

The furnace does not have a circular cross-section (Figure 3, upper right sketch). Since the 
present mathematical model is two-dimensional axisymmetrical, the furnace geometry in the 
computations is approximated by a cylinder having the same cross-sectional area. This approxi- 
mation should not impair the results too much, especially in the central zones where the important 

\ 

secondary flow(Air1 - f 
I 

i--- 
2000 --I 

Figure 3. The furnace and the burner (dimensions in mm) 
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mixing procedures and chemical reactions take place, since the walls are quite far away from the 
burner. The finite element mesh consisting of the composite elements of Figure 2 is shown in 
Figure 4. Here the grid lines are squeezed near the inlet for a better resolution of the high gradients 
expected in this region. At the outlet boundary ‘zero-traction’ boundary conditions are applied for 
the Navier-Stokes equations. The following set of model constants is used in the present 

am,, =af, = a,,, = 0.7. It is known that the ‘standard’ constants do not perform very well for the 
round free jet.7 In the present example, owing to the very large ratio of the furnace diameter to the 
jet diameter (Figure 3), the flow situation resembles, especially in the intial parts of the furnace, 
that of a free jet. Therefore the constants CD and C2 are modified for the first half of the furnace as; 
CD=0075, Cz = 1.89. 

The finite difference results for comparisons are taken from Richter.23 In this finite difference 
model a streamfunction-vorticity formulation with a k- W turbulence model was used. Different 
reaction models were employed.23 For the present comparisons, the resultsz3 using a Pdf model 
are considered, since it is the most comparable one to the present reaction model (EDC). A 20 x 20 
meshz3 was used in the finite difference computations. This number is indeed small in comparison 
with the present finite element mesh (Figure 4); but the finite difference model has the advantage, 
due to the streamfunction-vorticity formulation, that the continuity equation is identically 
satisfied, in this variable density flow, whereas the finite element grid has only 16 x 16 pressure 
nodes within the furnace region due to the mixed interpolation (Figure 4). 

The computed velocity field is plotted in Figure 5. As can be seen from the figure, the 
recirculation zone extends through the whole furnace. 

Streamlines and the radial profiles of the streamfunction are presented in Figures 6 and 7 
respectively. The finite element results show good agreement with experiment, whereas the finite 
difference curves predict too high values in the middle regions of the furnace. This superiority of 
the finite element results may partly be attributed to the better treatment of the momentum 
equations via the finer discretization. 

The variation of the recirculating mass flow is shown in Figure 8. Again the finite element curve 
shows fair agreement with experiment, whereas the finite difference curve predicts too high values 
in the middle, as already implied by Figures 6 and 7. 

Radial temperature profiles at four axial locations are presented in Figure 9. In most parts, the 
finite element results agree better with experiment. 

~ t u d y : ~ , ’ ~  CD=0.09, c1=1’43, cl=1’92, C ~ , E D C = ~ * ~ ,  c2*~,,=2’0; ak,e= 1.0, fJE,e=1’3 ,  

Figure 4. The finite element mesh 
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Figure 5. The velocity field 

Figure 6. Streamlines 
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Figure 7. Radial profiles of the streamfunction 
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Figure 8. Variation of the recirculating mass flow with inlet distance 
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Figure 9. Radial temperature profiles 

The variation of the incident radiative heat flux along the furnance wall is shown in Figure 10. 
In the present computations a constant absorption coefficient of 0.15 m-’ is assumed. The finite 
difference curve shown in Figure 10 is taken from Michelfelder” and was obtained by the zone 
method’ using the measured gas temperatures and concentrations. The finite element curve is 
somewhat too ‘smooth’, but still gives a good estimation of the total heat flux. 

Radial concentration profiles of CH4 and O2 near the reaction zone at two different axial 
locations are presented in Figure 11. A similar width of the reaction zone is predicted by the two 
methods, though the finite element curves generally show better agreement with experiment. 

In Figure 12 the flow of the chemically bounded energy along the furnace length is presented. 
The finite element predictions again show quite good agreement with experiment. 
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Figure 10. Variation of incident heat flux along the furnace wall 

n- I I 
- A  I 

x: 2.035 m 
3 2  

VOPh 1 

0 0.2 0.4 rlml 

- FE 
- -- FD 

oExp. 

x= 2.750 m 

c 9  02 

0 

! I 

0 0.2 0.4 rim1 

Figure 11.  Radial concentration profiles 
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Figure 12. Variation of the integral burn-out along the furnace length 
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In the above computations a 2 x 2 Gaussian integration is employed to evaluate finite element 
integrals numerically. Owing the quadratic weighting functions, variable material properties 
( p t ,  p)  and element distortions, the integrands in terms of the local co-ordinates are of quite high 
orders, for which a 2 x 2 integration is no longer exact. In order to see the influence of the 
numerical integration on accuracy, results were also obtained using a 3 x 3 Gaussian integration. 
No remarkable changes were observed in comparison with the 2 x 2 quadrature, showing that the 
2 x 2 Gaussian integration is still accurate enough for the present case. 

CONCLUSIONS 

The present finite element model has been shown to predict succesfully the important features of 
enclosed turbulent diffusion flames. We expect that the incorporation of adaptive procedures will 
improve the prediction capability. The employment of different types of elements, and possible 
refinements in the radiation model or upwind procedures, will also be considered in future 
investigations. 
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U 
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z 

NOMENCLATURE 

integral specific heat of species j at constant pressure 
constants in turbulence model 
constants in reaction model 
largest nozzle diameter 
constant in near-wall velocity profile 
fuel 
specific enthalpy 
integral flow of chemically bounded energy 
direction-independent local mean radiation intensity 
black body radiation intensity 
turbulence kinetic energy 
absorption coefficient 
mass rate of flow 
mass concentration of species j 
molecular weight of species j 
normal direction 
pressure 
heat flux 
radial co-ordinate 
universal gas constant 
temperature 
axial velocity component 
shear velocity 
radial velocity component 
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WP 
X axial co-ordinate 
Y distance from wall 

velocity component parallel to wall 

Greek Symbols 

U 

P 
E 

K 
1 
Pt 
’i 
P 
D 

z 
v 

Subscripts 

e 

P 
R 
S 

t 
W 

0 

heat transfer coefficient 
extinction coefficient 
dissipation rate of turbulence kinetic energy, emissivity 
von Karman’s constant 
molecular viscosity 
turbulent viscosity 
stoichiometric coefficient of species j (mass basis) 
density 
Prandtl-Schmidt number 
shear stress 
normalized streamfunction 

effective 
inlet 
primary 
recirculating 
secondary 
turbulent 
wall 

Superscripts 

+ quantity non-dimensionalized by means of p, z, and p 
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